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ABSTRACT

We study the convergence of two price processes generated by two dynamic
double auctions (DA) and provide conditions under which the two price pro-
cesses converge to a Walrasian equilibrium in the underlying economy. When
the conditions are not satisfied, the price processes may result in a bubble or
crash.
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1. INTRODUCTION

A double auction (DA) mechanism is a market-clearing system by which
dispersed private information feeds into the system sequentially through

bilateral trading. With little concentrated information about total demand and
supply of an asset or good available to all participants in the marketplace, it
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is natural to ask whether the price process generated by this DA mechanism
converges to an equilibrium of the underlying economy or not.

Both A. Smith (1776) and Hayek (1945) raise a similar question how a mar-
ket mechanism in a laissez-faire economy, where individual participants with
little information about total demand and supply act solely in their self-interests,
is able to integrate “dispersed bits of [incomplete] information” correctly into
prices. A. Smith (1776) uses his famous “invisible hand” metaphor to describe
its magnificence of a price mechanism. Hayek (1945, p. 519) has further
explored the idea:

“The peculiar character of the problem of a rational economic
order is determined precisely by the fact that the knowledge of
the circumstances of which we must make use never exists in
concentrated or integrated form, but solely as the dispersed bits of
incomplete and frequently contradictory knowledge which all the
separate individuals possess. The economic problem of society is
thus not merely a problem of how to allocate “given” resources
[· · · ], it is rather a problem of the utilization of knowledge not
given to anyone in its totality.”

He goes on by saying: “This mechanism would have been acclaimed as one of
the greatest triumphs of the human mind” if “It were the result of deliberate
human design” (Hayek, 1945, p. 527). It should be noted that DA mechanisms
employed in real exchange markets across the world are deliberately designed
by humans.

An answer to the question is important for understanding price determina-
tion in an exchange market, since DA mechanisms have been widely used in
equity, commodity and currency markets, among others. For example, an ans-
wer to the question is vital for understanding the efficient markets hypothesis
(Fama, 1965) and the excess volatility puzzle (Shiller, 1981). Nonetheless, it
is not easy to come up with an answer. Indeed, does a DA mechanism matter
for the price determination of an asset? According to the efficient markets
hypothesis, the answer should be no since the price of an asset in an exchange
market should always follow its fundamental, with no systematic disparity
between the two that can be detected with fundamental or technical analysis.
On the other hand, excess volatility suggests that the answer may be yes, since
the price of an equity can deviate from its fundamental to a great degree and
such a deviation has been realized by a DA mechanism through a sequence of
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trading between buyer and seller pairs. But, if a DA mechanism really matters,
how is it possible for an equity with fundamental value of 100 to be traded,
say, at 300 or 50?

The main objective of this paper is to investigate if a DA mechanism can
generate a sequence of prices that converges to an equilibrium of the underlying
economy when individual demands and supplies are only privately known. To
achieve this goal, we study a benchmark model given below:

P minimize F(y) =
m

∑
i=1

fi(y)+
n

∑
j=1

g j(y)

subject to y ∈ Y , a nonempty convex subset of Rd
+, where fi and g j are

real-valued (possibly non-differentiable) convex functions defined on the d-
dimensional Euclidean space Rd . A large class of quasilinear economies with
m sellers and n buyers can be represented by this form (see Section 2.1). For
these economies, the quantity demanded and supplied at prices y for buyer
j = 1,2, · · · ,n and seller i = 1,2, · · · ,m are just subsets of the subdifferentials
−∂g j(y) and ∂ fi(y), respectively, using the Fenchel duality (Ma & Nie, 2003).
Thus, an equilibrium of the underlying economy studied in this paper is an
optimal solution to the problem P .

An Illustrative Example. For simplicity, consider an exchange economy
where there is a single object or asset with a finite number of identical copies
for sale. In a dynamic double auction, a buyer submits a bid order consisting
of a bid price and a bid size, and a seller submits an ask order consisting of an
ask price and an ask size, with the bid price at least as high as the ask price.
The bid size is the quantity the buyer is willing to buy at the bid price and the
ask size is the quantity the seller is willing to sell at the ask price. The price of
an object is a weighted average of the bid price and the ask price, with weight
α ∈ (0,1), as in a static double auction in Chatterjee & Samuelson (1983),
Myerson & Satterthwaite (1983), Wilson (1985), and Gresik (1991). Thus,
given a sequence of pairs of one buyer and one seller, a sequence of prices is
generated by a double auction. The next two questions are, at a given iteration,
who will be the buyer and the seller pair and how are bid and ask prices are
determined? We provide two specific examples of double auction to address
the two questions.

In the first double auction, we assume that the number of buyers equals the
number of sellers, and buyers and sellers form two cyclic rings: a buyer ring
and a seller ring (Figure 1). This system can be realized if the buyer and seller
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rings consist of two permutations of agents. A pair of a buyer and a seller is
selected according to the two cyclic rings, one pair at a time. The process starts
with price Xk at k. Then buyer π ′(1) and seller π(1) are the first pair to submit
their bid and ask, respectively, based on the observed Xk. After the iteration of
the pair (π ′(1),π(1)), the next pair will be buyer π ′(2) and seller π(2). This
iteration process ends with the pair (π ′(m),π(m)) and the price Xk+1.

Figure 1. Iterations under a double auction, where π and π ′ are two
permutations of agents.

Sellers’ ring

Buyers’ ring

π(1) · · · π(i) · · · π(m)- - - -

?

π ′(1) · · · π ′(i) · · · π ′(m)- - - -

6

We need to determine how a buyer bids and a seller asks. A buyer’s bid
equals the newly updated price from the previous pair along the two rings plus
a price increment that equals the product of the bid step size and the bid size.
The bid step size is the price increment for one unit of the object that the buyer
is willing to buy. Thus, the more a buyer wants to buy, the higher the bid price
increment. An ask price is determined similarly. A seller’s ask price equals the
newly updated price from the previous pair along the two rings minus a price
that equals the product of the ask step size and the ask size. The ask step size
is now the price decrement for one unit of the object for sale. Thus, the more a
seller wants to sell, the lower the ask price. To be more precise, let Φi−1,k be
the price at iteration k and designate the next selected pair as (π(i),π ′(i)). The
ask price ψπ(i),k and the bid price ϕπ ′(i),k are determined by, respectively,

ψπ(i),k =Φi−1,k−ak ·Sπ(i)(Φi−1,k), ϕπ ′(i),k =Φi−1,k+bk ·Dπ ′(i)(Φi−1,k), (1)

where Sπ(i)(Φi−1,k) and Dπ ′(i)(Φi−1,k) are the quantity supplied (i.e. the
ask size) and demanded (i.e. the bid size) at price Φi−1,k, respectively. If
Sπ(i)(Φi−1,k) and Dπ ′(i)(Φi−1,k) are set-valued maps, equation (1) should be

Journal of Mechanism and Institution Design 1(1), 2016



“p˙01” — 2016/12/18 — 10:04 — page 5 — #5

Jinpeng Ma, Qiongling Li 5

understood with two selections from the demand and supply. {ak} and {bk} are
the ask and bid step sizes, respectively. The price Φi,k, which is communicated
to the next pair, is determined by a weighted average of the bid and ask prices,
with weight α ∈ (0,1):

Φi,k = αψπ(i),k +(1−α)ϕπ ′(i),k. (2)

Equations (1) and (2) provide the rule on how the price at an iteration evolves
from one pair to the other along the two rings. The price process starts at
Φ0,k = Xk and ends with Xk+1 = Φm,k at time k. Then this process repeats
with two different permutations of agents. Thus, a sequence of prices Xk, k =
0,1,2, · · · , is generated. Note that we consider the case where m is potentially
a large number.

In our second randomized double auction a pair made up of a buyer and a
seller is independently selected. Here we do not need the condition that the
number of buyers equals the number of sellers because such an auction can be
seen as a special case, in which the buyer ring and the seller ring in Figure 1
each consist of a single agent. Thus, equations (1) and (2) provide a sequence
of prices {Xk} once again.

Results. Assume that the underlying economy has a Walrasian equilibrium
and the limit limk→∞

bk
ak

exists for two diminishing step sizes {ak} and {bk}.
Suppose there is a positive scalar λ such that (see Assumption 3.2)

∞

∑
k=0
|bk

n
−λ

ak

m
|<+∞. (3)

Then we show that λ must be limk→∞
bk
ak

.1 Our first main result Theorem
4.4 demonstrates that the price process {Xk} must converge to a Walrasian
equilibrium price vector of the underlying economy as long as the weight α

satisfies the equality α = λ

1+λ
. Beyond the existence of Walrasian equilibrium,

this convergence result does not depend on privately known demands and
supplies. Instead it depends on the two parameters α and λ related to the
auction form. If the weight α does not satisfy the equality α = λ

1+λ
, then

the price process {Xk} still converges to a price but it may be higher or lower
than the equilibrium price(s). A higher than equilibrium price (i.e. bubble)
is obtained when α < λ

1+λ
and a lower than equilibrium price (i.e. crash) is

1 The converse of this claim is not true. See Example 4.9.

Journal of Mechanism and Institution Design 1(1), 2016



“p˙01” — 2016/12/18 — 10:04 — page 6 — #6

6 Dynamic double auction

obtained when α > λ

1+λ
by the double auction. For example, α must be right

at 1
2 for λ = 1 in order for the auction to arrive at a Walrasian equilibrium.
For our randomized double auction, our second major result Theorem 4.7

shows that the above result still holds when λ is defined by λ = m
n limk→∞

bk
ak

,
where n is the number of buyers (or agents) and m is the number of sellers (or
objects), under Assumption 3.3. For example, if limk→∞

bk
ak

= 1 and m = 2n,
then α must be right at 2

3 for the auction to arrive at a Walrasian equilibrium.
Once again, this conclusion does not depend on fi and g j, which are unknown
to the mechanism designer.

The above two results are proved for a general case where there are multiple
heterogeneous objects, with each object having a finite number of identical
copies. In the general case, {Xk} is a sequence of price vectors rather than a
sequence of prices. The condition on λ is also stated for the case where the
limit limk→∞

bk
ak

may not exist.
Noises are identified as a key factor in the formation of bubbles and crashes

(Shleifer, 1999). So it is of interest to see how noises may change our results.
To examine this issue, we follow Ram et al. (2009) to introduce stochastic
noises into buy and sell orders under the two DA mechanisms. Interestingly,
our main results still hold for certain noises. This means that not all noises
can affect the informational efficiency of a DA mechanism. The relationship
between α and λ is still the key for the convergence of the price processes
under the two DA mechanisms with stochastic noises.

Literature. The benchmark model is the dual problem of the linear pro-
gramming relaxation in Bikhchandani & Mamer (1997) that can be reformula-
ted as a convex optimization problem in the price space without constraints
by P . An optimal solution to this dual P (i.e., a minimizer) is a Walrasian
equilibrium price vector of the original economy if the zero duality gap con-
dition holds.2 They also mention that the ascending price auction designed
in Kelso & Crawford (1982) for a noted many-to-one job matching market
can be used to achieve a Walrasian equilibrium price vector for their economy
under the gross substitutes condition. A salient feature of the English auction
in Kelso & Crawford (1982) is the constant increase (i.e. step size) of prices
for those workers in excess demand at each iteration. Milgrom (2000) studies

2 This dual approach and its related gradient method in search for an equilibrium in games can
be traced back to Arrow & Hurwicz (1957). Beyond its applications in economics and game
theory, the dual approach has many applications in other areas (see, e.g., Bertsekas, 2009;
Nedić & Ozdaglar, 2009).
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an economy similar to that in Bikhchandani & Mamer (1997) and provides an
English auction that uses a larger constant price increment in the beginning
and a smaller constant price increment near the end for an object in excess
demand; the price process generated by such an auction can approach a Walra-
sian equilibrium at a faster speed when the auction begins, with approximation
errors caused by the discrete price increment being reduced near the end of
the auction. Xu et al. (2015) provide a subsequent analysis of the two double
auctions presented in this paper with constant step sizes and obtain several
approximation error bounds, under a more general information communication
structure than Figure 1, when α is at random with unknown distributions.

It is often a challenging task to design an efficient auction when the gross
substitutes condition is not satisfied and agents have private reservation values
over bundles. Sun & Yang (2009, 2014) develop new auction mechanisms
that can approach an efficient allocation when goods are substitutes and com-
plements. There are several other auction mechanisms in the literature, see,
e.g., Ausubel (2004), Gul & Stacchetti (2000), and references in both Milgrom
(2000) and in Sun & Yang (2014).

An English auction is an ascending format of auction in which the price of
an item is gradually increased and adjusted in each round according to reported
total demand for the given total supply. When the scale of the market is small,
this may not cause a problem. However, when it is large, it can be difficult to
know the total demand at each round or iteration. A double auction is different,
since the process involves pairs of buyers and sellers at each moment in time.
A question arises as to whether such an auction process can always achieve
a Walrasian equilibrium outcome as is the case with an English auction. The
question is a challenge because an equilibrium must be defined with respect to
the true demand and supply in totality. But, there is no way to know the total
demand and supply in a double auction at any moment in time.

Our double auctions are largely motivated by incremental subgradient met-
hods such as those studied in Kibardin (1980), Nedić & Bertsekas (2001), Ram
et al. (2009), and Solodov & Zavriev (1998). In an incremental subgradient
method, a single sequence of step sizes is used. They are effective in a uni-
lateral market where one single agent updates her information into the price
process. However, they are not as useful in a bilateral market situation using
double auctions, where there are two sequences of step sizes, one for the buyers
and the other for the sellers. A coordination (or “steering”) condition between
the two step sizes, such as the one on λ , is required for the convergence of
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the price process. If the λ condition fails to hold, our convergence results
also fail, as shown in Xu et al. (2015, 2016) using numerical simulations.
Following the current study, Xu et al. (2014, 2015, 2016) also demonstrate
several convergence results for the two double auctions when agents form
some Markovian chains in the iteration process. Moreover, Xu et al. (2015)
study the convergence of price processes under the two double auctions when
the weight α and two step sizes are independently drawn at random, with
unknown distributions.

A major issue with double auctions is proving the existence of a Nash equi-
librium; see, e.g., Satterthwaite & Williams (1989) and Jackson & Swinkels
(2005). However, interdependent reservation values over bundles, assuming
unit demand or supply,3 are not a major concern for a Nash equilibrium. Our
two dynamic double auctions are designed for an environment in which such
values play an important role, in a model such as the many-to-one job mat-
ching in Kelso & Crawford (1982) and the multiple unit demand economy
in Bikhchandani & Mamer (1997). These models may also be used for sol-
ving resource allocation problems in large scale distributional networks where
agents hold dispersed private information; see Subsection 2.2 and e.g., Kelly
et al. (1998), Nedić & Ozdaglar (2009), Ram et al. (2009). This analysis has
the potential to provide solutions to real world problems such as the business
to business trading in a marketplace or in multiagent coordination systems in
artificial intelligence (Xia et al., 2005).

The rest of the paper is organized as follows. Section 2 introduces the
model. Section 3 presents the two DA mechanisms and the main assumptions.
Section 4 discusses the main results with DA mechanisms without stochastic
noises. Section 5 establishes the main results with stochastic noises. Section 6
concludes.

2. MODEL

We consider the following general problem (see also Bertsekas, 2012):

P minimize F(y)≡ f (y)+g(y)

subject to y ∈ Y,

3 Kojima & Yamashita (2016) offer a latest noted exception along the line of Myerson &
Satterthwaite (1983).
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where

f =
m

∑
i=1

fi and g =
n

∑
j=1

g j.

For all i = 1,2, · · · ,m and j = 1,2, · · · ,n, fi : Rd → R and g j : Rd → R are
convex functions and Y is a nonempty convex subset of Rd

+. As Bertsekas
(2012) has demonstrated, such a form covers a large class of problems in
the literature: a). least squares and related inference problems; b). dual
optimization in separable problem; c). problems with many constraints; d).
minimization of an expected value - stochastic programming; e). Weber
problem in location theory; f). distributed incremental optimization-sensor
networks. Here we focus on an application of the problem P to exchange
economies with indivisible assets or goods. Thus we may assume that the
price space Y is compact. Since every convex function ϕ on a compact set
Y is regular Lipschitzian, the set of subgradients ∂ϕ(y) for every y ∈ Y is a
nonempty, compact, and convex set, where ∂ϕ(y) is defined by

∂ϕ(y) = {η | ϕ(y)+ 〈η ,w− y〉 ≤ ϕ(w),∀w};

see e.g., Clarke et al. (1988). For any two regular functions ϕ and ψ at y, the
sum ϕ +ψ is regular at y and

∂ (ϕ +ψ)(y) = ∂ϕ(y)+∂ψ(y).

We use the following notation

F∗ = inf
y∈Y

F(y), Y ∗ = {y ∈ Y | F(y) = F∗}, dist(y,Y ∗) = inf
y∗∈Y ∗

‖y− y∗‖

where ‖ · ‖ denotes the Euclidean norm.

2.1. Benchmark Economies with Multiple Indivisible Objects

We now show how the problem P naturally captures a large class of economies
or markets typified by the many-to-one job matching model of Kelso & Craw-
ford (1982) and its related economy with indivisible objects in Bikhchandani
& Mamer (1997).

Let M = {1,2, · · · ,m} denote the set of objects and N = {1,2, · · · ,n} de-
note the set of agents. An agent j’s reservation value function u j : 2M→ R+ is
defined over bundles of objects in M such that u j( /0) = 0. A feasible allocation

Journal of Mechanism and Institution Design 1(1), 2016
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Z is a partition (Z0,Z1, · · · ,Zn) of all objects in M, in which agent j is allocated
with the bundle Z j and Z0 is the unsold bundle. Let Z̄ denote the set of all
feasible allocations. A feasible allocation Z∗ is Pareto optimal or efficient if

V ≡
n

∑
j=1

u j(Z∗j )≥
n

∑
j=1

u j(Z j), ∀Z ∈ Z̄.

Given a price vetor p ∈ Rm
+, agent j’s demand D j(p) consists of all bundles

of M that maximize his surplus, i.e., D j(p) = {S ⊂ M | u j(S)−∑i∈S pi ≥
u j(T )−∑t∈T pt , ∀T ⊂M}. A pair (Z, p) of a feasible allocation Z ∈ Z̄ and
a price vector p ∈ Rm

+ is a Walrasian equilibrium if pz = 0 for all z ∈ Z0
and Z j ∈ D j(p) for all j ∈ N. It is well-known that a Walrasian equilibrium
allocation is efficient. Even though an efficient allocation always exists, a
Walrasian equilibrium may not exist, due to the nature of interdependent
reservation values. Objects that are complement often cause the problem. Two
goods satisfy the gross substitutes (GS) condition if a good that is in demand
and whose price is not raised will still be in demand if the price of the other
good arises. The GS condition of Kelso & Crawford (1982) is a sufficient
condition for existence of a Walrasian equilibrium (Bikhchandani & Mamer,
1997; Gul & Stacchetti, 1999). Extensive studies of this condition can be found
in Fujishige & Yang (2003), Hatfield & Kojima (2010), Hatfield & Milgrom
(2005) among others. Economies that include complementary goods have been
studied by Sun & Yang (2006, 2008, 2014).

Given p ∈ Rm
+, define π j(p) = u j(S)−∑i∈S pi for S ∈ D j(p). Note that

π j(p) is convex. Then the dual of the linear programming relaxation of the
integer programming in Bikhchandani and Mamer can be seen as a convex
minimization problem without constraints:

V ′′ = min
p∈Rm

+

V (p)≡
m

∑
i=1

pi +
n

∑
j=1

π j(p). (4)

Then, we have V (p)≥V for all p ∈ Rm
+.

Define e : 2M→ Rm by ei(S) = 1 for i ∈ S and ei(S) = 0 otherwise. We can
write the demand correspondence D̂ j : Y →Rm by D̂ j(p) = {e(S) | S∈D j(p)}.

Define g j(p) = π j(p) for all j = 1,2, · · · ,n and fi : Rn
+→ R by fi(p) = pi

for all i = 1,2, · · · ,m. Thus we obtain the general form F(p) = f (p)+g(p)
subject to p ∈ Y ⊂ Rm

+. Note that the supply of an asset is the interval [0,1]
at zero price. It follows from the Fenchel duality that c̄oŜi(p) = ∂ fi(p) and
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∂g j(p) =−c̄oD̂ j(p) for all p ∈ Y , where c̄oC denotes the closed convex hull
of the set C (Ma & Nie, 2003). A vector y is an optimal solution in Y ∗ if and
only if

0 ∈
n

∑
i=1

c̄oŜi(y)−
m

∑
j=1

c̄oD̂ j(y).

Thus, a price vector p ∈ Y is at an equilibrium only if 0 ∈ ∂ ( f +g)(p).
Because P is a dual of the linear programming relaxation of the primal

integer programming in Bikhchandani & Mamer (1997) for finding an efficient
allocation, a solution y to P is a Walrasian equilibrium if and only if the
duality gap is zero, i.e., V (y) =V (Bikhchandani & Mamer, 1997; Ma & Nie,
2003). Note that the duality gap approaches zero for a large scale economy (as
m and n go to infinite) (Bertsekas, 2009).

2.2. A Congestion Control Problem with Production

We introduce a data transmission or congestion control problem on a given
network with each link a production function (see, e.g., Kelly et al., 1998).
Let N = {1,2, · · · ,n} denote the set of sources and L = {1,2, · · · ,L} the
set of all undirected links. Each link l ∈ L has an increasing and convex
cost function cl : [0,∞)→ [0,∞) such that cl(0) = 0, i.e., it costs a link l
the amount cl(q) to produce capacity q≥ 0. Let L(i)⊂L denote the set of
links used by source i ∈N . The utility function for a source i is defined
by ui : [0,∞)→ [0,∞), which is assumed to be increasing and concave. That
is, source i gains a utility ui(xi) when it sends data at a transmission rate xi.
Let N(l) = {i ∈N | l ∈ L(i)} denote the set of sources that use link l. Let
p ∈ RL

+ denote a price vector, i.e., a link charges pl per unit rate (e.g., packets
per second) of data transmission (Kelly et al., 1998). Define e : 2L → RL

by el(S) = 1 if l ∈ S and el(S) = 0 otherwise. Define the supply function
Sl : RL

+ → [0,∞) by Sl(p) = {q | plq− cl(q) ≥ plz− cl(z),∀z ≥ 0} and the
demand function Di : RL

+→ RL
+ by Di(p) = {e(L(i))xi | ui(xi)−xi ∑l∈L(i) pl ≥

ui(z)− z∑l∈L(i) pl,∀z ≥ 0}. A triplet (p;x,q) ∈ RL
+×Rn

+×RL
+ is a network

equilibrium if a). e(L(i))xi ∈Di(p) for all i ∈N ; b). ql ∈ Sl(p) for all l ∈L ;
c). ∑i∈N(l) xi ≤ ql for all l ∈L . Define fl(p) = plq− cl(q),q ∈ Sl(p) for all
l ∈L , and gi(p) = ui(xi)− xi ∑l∈L(i) pl,e(L(i))xi ∈ Di(p) for all i ∈N . Let
f (p)=∑l∈L fl(p) and g(p)=∑i∈N gi(p). We obtain the problem P , subject
to p∈RL

+. Thus, one can show that (p;x,q) is an equilibrium iff p is an optimal
solution to the problem P . Note that Y ∗ is nonempty. So an equilibrium always
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exists with transmission rates that are divisible. The problem P formalized
this way is in fact the dual problem of a utility maximization problem on
networks. See Kelly et al. (1998), and the examples discussed in Nedić &
Ozdaglar (2009) and Ram et al. (2009), where each link is given with a fixed
capacity, no production available. A flexible capacity network is often needed
in practice. Under some mild assumptions, the first social welfare theorem
holds (i.e., the duality gap is zero). Thus, finding an equilibrium under the
problem P is one way to solve the primal utility maximization problem.

3. TWO DOUBLE AUCTIONS

We introduce two new dynamic double auctions. One double auction is desig-
ned based on the bilateral cyclic structure presented in Figure 1. The other one
is based on a random match between the sellers and the buyers.

3.1. A Cyclic Double Auction (CDA)

Assume that m = n, which holds if the initial endowments are owned by the n
agents, who act as both sellers and buyers.

CDA Mechanism: Let Φ0,k = Xk. For i = 1,2, · · · ,m, let

ψi,k = Φi−1,k−ak5 fi(Φi−1,k), (5)
ϕi,k = Φi−1,k−bk5gi(Φi−1,k), (6)
Φi,k = PY (αψi,k +(1−α)ϕi,k), α ∈ (0,1), (7)

where 5 fi(Φi−1,k) ∈ ∂ fi(Φi−1,k) and 5gi(Φi−1,k) ∈ ∂gi(Φi−1,k). PY is the
Euclidean projection onto Y because the weighted average of the bid and ask
prices may be out of Y in the process. Let

Xk+1 = Φm,k. (8)

Our explanation of this auction is as follows. Xk is the initial price vector for
time k. We want to obtain Xk+1 with a round of m iterations. To accomplish the
task, the m sellers and m buyers form a cyclic seller ring and a cyclic buyer ring
in two random orders, i.e., two random permutations of the m agents. Then we
rename these agents in the two rings with i = 1,2, · · · ,m. Based on the initial
price vector Φ0,k = Xk, seller 1 and buyer 1 are the first pair to submit an ask
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order and a bid order to determine Φ1,k, which is then communicated to the
next pair, seller 2 and buyer 2. This process continues until it reaches the last
pair, seller m and buyer m, to obtain Φm,k. The price vector Xk+1 is set to be
Φm,k to end the m iterations in the cycle. After obtaining Xk+1, the m agents
are reshuffled and renamed with two new random permutations and the process
proceeds with Xk+1 in the same manner as with Xk. The auction starts with a
given X0 ∈ Y ⊂ Rd

++, and generates a sequence of price vectors {Xk}, k ≥ 0.
The ask order for seller i at k consists of a vector of ask prices ψi,k and an

ask size 5 fi(Φi−1,k), where 5 fi(Φi−1,k) is on the supply curve ∂ fi(Φi−1,k).
The relationship between ask prices and sizes is given by equation (14), where
ak is the ask step size at round k, which is the price decrement for one unit of
object for sale. The ask prices are lower than Φi−1,k, the newly updated prices
from the previous pair. The more the seller wants to sell an object, the lower
the ask prices.

Similarly, the bid order for buyer i at k consists of a vector of bid prices
ϕi,k and a bid size 5gi(Φi−1,k), where 5gi(Φi−1,k) is on the demand curve
−∂gi(Φi−1,k). The relationship between bid prices and sizes is given by
equation (15), where bk is the bid step size at round k, which is the price
increment for one unit of object to buy. The bid prices are higher than Φi−1,k,
the newly updated prices from the previous pair. The more the buyer wants to
buy an object, the higher the bid prices. The prices Φi,k are a weighted average
of the ask and bid prices, with a weight in (0,1), as in Chatterjee & Samuelson
(1983).

We provide conditions on the weight α and the two step sizes {ak} and
{bk} so that the price process {Xk} converges to an optimal solution in Y ∗.

It may be useful to compare CDA with the noted cyclic incremental subgra-
dient method (e.g., Nedić & Bertsekas, 2001).

Incremental Subgradient Method: Assume m = n and X0 ∈ Y . Let
Φ0,k = Xk. For i = 1,2, · · · ,m, let

Φi,k = PY (Φi−1,k−ak5 ( fi +gi)(Φi−1,k)),

where 5( fi + gi)(Φi−1,k) ∈ ∂ ( fi + gi)(Φi−1,k). Let Xk+1 = Φm,k. PY is the
Euclidean projection onto the set Y .

In the incremental subgradient method, m agents form a single ring in an
arbitrary order (Figure 2). Prices are iterated along the ring one agent at a
time. At each iteration, only one agent i reveals his buy size in −∂gi(Φi−1,k)
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Figure 2. An Iteration under the Incremental Subgradient Method.

f1 +g1 · · · fi +gi · · · fm +gm- - - -

?

together with his sell size in ∂ fi(Φi−1,k) at prices Φi−1,k. A key feature of
their algorithm is that adjustment in prices at each iteration depends on the
chosen step size ak and the individual excess supply5( fi +gi)(Φi−1,k). They
show that if the step size {ak} is diminishing, their algorithm generates a
sequence of prices that converges to an equilibrium in Y ∗. CDA is different
from the incremental subgradient method in two ways. First, the buyer and
seller cyclic rings are different. We consider f and g as two different sides
of the market. Second, there are two sequences of step sizes {ak} and {bk}
in CDA. This makes the convergence results for the incremental subgradient
method inapplicable to CDA because there is a new λ condition. Even if the
λ condition is satisfied, the weight α and the parameter λ must be in a right
combination so that the process {Xk} can converge to an optimal solution in Y ∗.
We need to consider two step sizes because the market using double auctions is
bilateral, in contrast to the unilateral market under the incremental subgradient
method.

3.2. A Randomized Double Auction (RDA)

Let wk be a random variable taking equiprobable values from the set {1,2, · · · ,m}
and w′k be a random variable taking equiprobable values from the set {1,2, · · · ,n}.
Let5 fwk(Xk)∈ ∂ fwk(Xk) and5gw′k

(Xk)∈ ∂gw′k
(Xk), where if wk takes a value

i, then the vector ∂ fwk(Xk) is ∂ fi(Xk), similarly for g. Here we do not need to
assume that m = n.

Our sequence {Xk} is generated by RDA mechanism as below.

RDA Mechanism: Given Xk, let

ψwk,k+1 = Xk−ak5 fwk(Xk), (9)
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ϕw′k,k+1 = Xk−bk5gw′k
(Xk). (10)

Let
Xk+1 = PY (αψwk,k+1 +(1−α)ϕw′k,k+1), (11)

where α ∈ (0,1) and PY is the Euclidean projection onto Y .

Our explanation of this auction is as follows. Xk is the price vector at time
k. We want to obtain Xk+1 by incorporating individual demand and supply
information from a pair of buyer and seller, with the seller randomly selected
from the set of sellers and the buyer randomly selected from the set of buyers.
The bid prices and bid size as well as the ask price and ask bid are determined
in the same way as in CDA. This is equivalent to the case where a seller
randomly matches with a buyer. Again, the auction starts with X0 ∈ Y . Then
(9)-(11) generate a sequence of prices Xk, k = 1,2, · · · .

We are interested in the convergence of {Xk} and the conditions under
which {Xk} converges to an optimal solution in Y ∗. Because f and g are
privately known to agents, not to the mechanism designer, our conditions
cannot be imposed on f and g. This provides a challenge because information
about f and g has never been revealed in totality in the two auction processes.
The two auction forms are in spirit close to the decentralized market mechanism
as stated in A. Smith (1776) and Hayek (1945), in contrast to a centralized
market mechanism.

3.3. Key Assumptions

We assume that the step sizes satisfy the following diminishing conditions
in Assumption 3.1, which is standard for many convergence results in the
literature. Assumptions 3.2 and 3.3 are the two new assumptions for two
double auctions CDA and RDA. To achieve an equilibrium in Y ∗, we must
have a right combination of α and λ .

Assumption 3.1 (Diminishing step sizes). Assume that the two sequences {ak}
and {bk} of step sizes are such that (i). ak > 0 and bk > 0; (ii). ∑

∞
k=0 ak =+∞

and ∑
∞
k=0 bk =+∞; (iii). ∑

∞
k=0 a2

k <+∞ and ∑
∞
k=0 b2

k <+∞.

Assumption 3.2. Assume that the two sequences {ak} and {bk} of step sizes
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are such that there exists some positive λ to ensure

∞

∑
k=0
|bk−λak|<+∞. (12)

Assumption 3.3. Assume that the two sequences {ak} and {bk} of step-sizes
are such that there exists some positive λ to ensure

∞

∑
k=0
|bk

n
−λ

ak

m
|<+∞. (13)

Note the difference between Assumptions 3.2 and 3.3. Assumption 3.2
is for CDA where m = n, while Assumption 3.3 is for RDA where m may
be different from n. These λ conditions (12) and (13) will be discussed in
Subsection 4.4.

4. MAIN RESULTS

In this section we prove our two main results for CDA (5)-(8) and RDA (9)-(11).
Lemma 4.1 below is the key for both mechanisms.

4.1. Main Result: CDA

Since Y is compact, there exist scalars C1,C2, · · · ,Cm and D1,D2, · · · ,Dm such
that

‖h‖ ≤Ci, ∀h ∈ ∂ fi(Xk)∪∂ fi(Φi−1,k), i = 1,2, · · · ,m,k = 0,1,2, · · ·

and

‖`‖ ≤ Di, ∀` ∈ ∂gi(Xk)∪∂gi(Φi−1,k), i = 1,2, · · · ,m,k = 0,1,2, · · · .

Note that m = n.

Lemma 4.1. Let {Xk} be the sequence generated by CDA (5)-(8). Then for
all y ∈ Y and k ≥ 0, we have

‖Xk+1− y‖2 ≤ ‖Xk− y‖2−2akα( f (Xk)− f (y))−2bk(1−α)(g(Xk)−g(y))
+ (αakC+(1−α)bkD)2,
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where C = ∑
m
i=1Ci and D = ∑

m
i=1 Di.

Remark. This lemma shows that the quadratic distance of the price
process {Xk} to an equilibrium in Y ∗ can be bounded and that it is possi-
ble for the price process to approach an equilibrium in Y ∗. Nonetheless, a
naive choice y in Y ∗ does not work because of this term [akα f (Xk)+bk(1−
α)g(Xk)]− [akα f (y) + bk(1− α)g(y)], which is not a sum form f + g as
defined in P . For a choice y in Y ∗, there is no guarantee that the term
[akα f (Xk)+ bk(1−α)g(Xk)]− [akα f (y)+ bk(1−α)g(y)] is always nonne-
gative. This is why the convergence results for the incremental subgradient
method with diminishing step sizes in Nedić & Bertsekas (2001) does not
apply to CDA.

Proof. Denote hi,k =5 fi(Φi−1,k) and `i,k =5gi(Φi−1,k) for all i= 1,2, · · · ,m.
By the non-expansive property of projection, we have

‖Φi,k− y‖2 ≤ ‖αψi,k +(1−α)ϕi,k− y‖2

= ‖α(ψi,k− y)+(1−α)(ϕi,k− y)‖2

= α
2‖ψi,k− y‖2 +(1−α)2‖ϕi,k− y‖2

+2α(1−α)〈(ψi,k− y),(ϕi,k− y)〉
= α

2‖Φi−1,k− y−akhi,k‖2 +(1−α)2‖Φi−1,k− y−bk`i,k‖2

+2α(1−α)〈(Φi−1,k− y−akhi,k),(Φi−1,k− y−bk`i,k)〉
= α

2‖Φi−1,k− y‖2−2akα
2〈hi,k,(Φi−1,k− y)〉+α

2a2
k‖hi,k‖2

+(1−α)2‖Φi−1,k− y‖2−2bk(1−α)2〈`i,k,(Φi−1,k− y)〉
+(1−α)2b2

k‖`i,k‖2 +2α(1−α)‖Φi−1,k− y‖2

−2α(1−α)ak〈hi,k,(Φi−1,k− y)〉
−2α(1−α)bk〈`i,k,(Φi−1,k− y)〉
+2α(1−α)akbk〈hi,k, `i,k〉

= ‖Φi−1,k− y‖2−2(1−α)bk〈`i,k,(Φi−1,k− y)〉
+‖αakhi,k +(1−α)bk`i,k‖2−2αak〈hi,k,(Φi−1,k− y)〉

Since we have ‖hi,k‖ ≤Ci,‖`i,k‖ ≤ Di for all k = 0,1,2, · · · , we obtain

‖Φi,k− y‖2 ≤ ‖Φi−1,k− y‖2 +(αakCi +(1−α)bkDi)
2

−2〈(αakhi,k +(1−α)bk`i,k),(Φi−1,k− y)〉
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Summing over i = 1,2, · · · ,m, we get

m

∑
i=1
‖Φi,k− y‖2 ≤

m

∑
i=1
‖Φi−1,k− y‖2 +

m

∑
i=1

(αakCi +(1−α)bkDi)
2

−2
m

∑
i=1
〈(αakhi,k +(1−α)bk`i,k),(Φi−1,k− y)〉

So we have

‖Xk+1− y‖2 ≤ ‖Xk− y‖2 +
m

∑
i=1

(αakCi +(1−α)bkDi)
2

−2
m

∑
i=1
〈(αakhi,k +(1−α)bk`i,k),(Φi−1,k− y)〉

By the definition of subgradients hi,k and `i,k,

〈hi,k,(y−Φi−1,k)〉 ≤ fi(y)− fi(Φi−1,k)

and
〈`i,k,(y−Φi−1,k)〉 ≤ gi(y)−gi(Φi−1,k).

Then

‖Xk+1− y‖2 ≤ ‖Xk− y‖2−2(1−α)bk

m

∑
i=1

(gi(Φi−1,k)−gi(y))

+
m

∑
i=1

(αakCi +(1−α)bkDi)
2−2αak

m

∑
i=1

( fi(Φi−1,k)− fi(y))

So

‖Xk+1− y‖2 ≤ ‖Xk− y‖2−2αak( f (Xk)− f (y))−2(1−α)bk(g(Xk)−g(y))

−2αak

m

∑
i=1

( fi(Φi−1,k)− fi(Xk))+
m

∑
i=1

(αakCi +(1−α)bkDi)
2

−2(1−α)bk

m

∑
i=1

(gi(Φi−1,k)−gi(Xk))

Next we need to estimate fi(Φi−1,k)− fi(Xk) and gi(Φi−1,k)−gi(Xk).

Lemma 4.1.1. ‖Φi−1,k−Xk‖ ≤ ∑
i−1
j=1(αakC j +(1−α)bkD j).
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Proof. We show Lemma 4.1.1 by induction. Note that Φ0,k−Xk = 0. Assume
that it holds for i−1. Then

‖Φi,k−Xk‖ = ‖(αψi,k +(1−α)ϕi,k)−Xk‖
≤ α‖ψi,k−Xk‖+(1−α)‖ϕi,k−Xk‖
≤ α‖Φi−1,k−akhi,k−Xk‖+(1−α)‖Φi−1,k−bk`i,k−Xk‖
≤ ‖Φi−1,k−Xk‖+αakCi +(1−α)bkDi by induction hypothesis

≤
i−1

∑
j=1

(αakC j +(1−α)bkD j)+αakCi +(1−α)bkDi.

This completes the proof of Lemma 4.1.1.

So

‖ fi(Φi−1,k)− fi(Xk)‖ ≤
i−1

∑
j=1

Ci(αakC j +(1−α)bkD j)

and

‖gi(Φi−1,k)−gi(Xk)‖ ≤
i−1

∑
j=1

Di(αakC j +(1−α)bkD j).

Plugging into (14), we have

‖Xk+1− y‖2 ≤ ‖Xk− y‖2−2αak( f (Xk)− f (y))−2(1−α)bk(g(Xk)−g(y))

+2
m

∑
i=1

(αakCi +(1−α)bkDi)
i−1

∑
j=1

(αakC j +(1−α)bkD j)

+
m

∑
i=1

(αakCi +(1−α)bkDi)
2

= ‖Xk− y‖2−2αak( f (Xk)− f (y))−2(1−α)bk(g(Xk)−g(y))

+(
m

∑
i=1

(αakCi +(1−α)bkDi))
2

= ‖Xk− y‖2−2αak( f (Xk)− f (y))−2(1−α)bk(g(Xk)−g(y))

+(αakC+(1−α)bkD)2.

This completes the proof of Lemma 4.1.
Remark. To apply Lemma 4.1, we must choose a right y for CDA. To do

so, we need to define the following P(α,λ ):

P(α,λ ) minimizey∈Y F(y,α,λ )≡ (α f +λ (1−α)g)(y)
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where α ∈ (0,1). The parameter λ is some positive scalar. Then we introduce
the following notation

F∗(α,λ ) = inf
y∈Y

F(y,α,λ ), Y ∗(α,λ ) = {y ∈ Y | F(y,α,λ ) = F∗(α,λ )},

and dist(x,Y ∗(α,λ )), the Euclidean distance. Note that Y ∗ and Y ∗(α,λ ) are
related but they are not the same, depending on α and λ .

Proposition 4.2. Let Assumptions 3.1 and 3.2 hold. Let {Xk} be the price
sequence generated by CDA (5)-(8). Then

liminf
k→∞

dist(Xk,Y ∗(α,λ )) = 0.

Proof. From Lemma 4.1, we obtain for all y∗ ∈ Y ∗(α,λ ) and k ≥ 0,

‖Xk+1− y∗‖2 ≤ ‖Xk− y∗‖2−2(bk−λak)(1−α)(g(Xk)−g(y∗))
−2ak[(α f +(1−α)λg)(Xk)− (α f +(1−α)λg)(y∗)]
+(αakC+(1−α)bkD)2.

Since Y is compact, g is continuous, image (g(Y )) is bounded. That means
there exists M > 0 such that |g(y)| ≤ M for all y ∈ Y . Hence, for any N =
1,2, · · · ,

0 ≤ ‖XN+1− y∗‖2 ≤ ‖X0− y∗‖2 +
N

∑
k=0

(αakC+(1−α)bkD)2

−2
N

∑
k=0

ak[(α f +(1−α)λg)(Xk)− (α f +(1−α)λg)(y∗)]

+2(
N

∑
k=0
|bk−λak|) · (1−α) ·2M

= I− II + III + IV.

I is a constant. When N goes to infinity, III <+∞ since ∑
∞
k=0 |bk−λak|<+∞

and

IV ≤ 2(α2C2
∞

∑
k=0

a2
k +(1−α)2D2

∞

∑
k=0

b2
k)<+∞.
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Thus, II <+∞. We obtain

liminf
k→∞

[(α f +(1−α)λg)(Xk)− (α f +(1−α)λg)(y∗)] = 0.

Otherwise, ∃δ > 0 such that for any natural number k

(α f +(1−α)λg)(Xk)− (α f +(1−α)λg)(y∗)> δ .

And then II > δ ∑
∞
k=0 ak =+∞, a contradiction.

Now take a subsequence {Xnk} of {Xk} such that

0≤ (α f +(1−α)λg)(Xnk)− (α f +(1−α)λg)(y∗)<
1
k
.

By the fact that Y is compact, {Xnk} has at least one accumulation point y0,
say, and since α f +(1−α)λg is continuous, we have that

lim
k→∞

(α f +(1−α)λg)(Xnk) = (α f +(1−α)λg)(y0).

By the definition of {Xnk}, we know that

lim
k→∞

(α f +(1−α)λg)(Xnk) = (α f +(1−α)λg)(y∗), y∗ ∈ Y ∗(α,λ ).

Hence, y0 ∈ Y ∗(α,λ ). So

liminf
k→∞

dist(Xk,Y ∗(α,λ )) = 0.

This completes the proof.

Proposition 4.3. Let Assumptions 3.1 and 3.2 hold. Then the sequence {Xk}
in Proposition 4.2 converges to an optimal solution y0 ∈ Y ∗(α,λ ).

Proof. Let

δk = 2ak[(α f +(1−α)λg)(Xk)− (α f +(1−α)λg)(y0)]

+2(|bk−λak|) · (1−α) ·2M+(αakC+(1−α)bkD)2 > 0.
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Then ∑
∞
k=0 δk = II + III + IV < +∞ (see the proof of Proposition 4.2). We

also have that

‖Xk+1− y0‖2 ≤ ‖Xk− y0‖2 +(αakC+(1−α)bkD)2

−2ak[(α f +(1−α)λg)(Xk)− (α f +(1−α)λg)(y0)]

+2(|bk−λak|) · (1−α) ·2M
≤ ‖Xk− y0‖2 +δk.

Then applying Proposition 1.3 in Correa & Lemaréchal (1993) to the result in
Proposition 4.2, we have that

lim
k→∞

Xk = y0.

Theorem 4.4. Let Assumptions 3.1 and 3.2 hold. Assume that α = λ

1+λ
and

α ∈ (0,1). Then the sequence {Xk} generated by CDA (5)-(8) converges to an
optimal solution in Y ∗.

Proof. It follows from Proposition 4.3 and the definition of Y ∗(α,λ ), which
is the same as Y ∗ when (1−α)λ = α holds. This completes the proof.

Remark. Suppose the limit limk→∞
bk
ak

exists and Assumptions 3.1 and

3.2 hold. Then we will see in Section 4.4 that λ = limk→∞
bk
ak

. Assume that
λ = 1. Then Theorem 4.4 shows that the price process {Xk} converges to a
Walrasian equilibrium of the underlying economy if α = 1

2 . Once λ changes,
we must also change α accordingly in order to achieve a Walrasian equilibrium.
Otherwise the price process {Xk} still converges but it may not converge to
a Walrasian equilibrium of the original economy. In particular, Theorem 4.4
fails if Assumption 3.2 does not hold, as shown in Xu et al. (2015, 2016) by
numerical simulations.

4.2. Main Result for RDA

Assumption 4.5. The sequence {wk}({w′k}) is a sequence of independent
random variables, each uniformly distributed over the set {1,2, · · · ,m} ({1,2, · · · ,n}).
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Furthermore, the two sequences {wk} and {w′k} are independent of the se-
quence {Xk}.

Since Y is compact, f and g are regular, we have that the two sets of
subgradients {5 fwk(Xk),k = 0,1,2, · · ·} and {5gw′k

(Xk),k = 0,1,2, · · ·} are
bounded. That is, there exist some positive constants C0 and D0 such that, with
probability 1, ‖5 fwk(Xk)‖ ≤C0 and ‖5gw′k

(Xk)‖ ≤ D0,∀k ≥ 0.

Proposition 4.6. Let Assumptions 3.1, 3.3, and 4.5 hold. Then the sequence
{Xk} generated by RDA (9)-(11) converges to an optimal solution in Y ∗(α,λ )
with probability 1.

Proof. Since Y is compact and g is continuous, there exists M such that
|g(y)| ≤M for all y ∈ Y . We obtain for all k and y ∈ Y ∗(α,λ ), as in the proof
of Proposition 4.2, by applying Lemma 4.1 to the case with m = 1:

E{‖Xk+1− y‖2|Fk} ≤ ‖Xk− y‖2−2(1−α)
bk

n
(g(Xk)−g(y))

+(αakC0 +(1−α)bkD0)
2−2α

ak

m
( f (Xk)− f (y))

≤ ‖Xk− y‖2 +(αakC0 +(1−α)bkD0)
2

−2ak

m
[(α f +λ (1−α)g)(Xk)− (α f +λ (1−α)g)(y)]

+2|bk

n
−λ

ak

m
| · |g(Xk)−g(y)|

≤ ‖Xk− y‖2 +4M|bk

n
−λ

ak

m
|+(αakC0 +(1−α)bkD0)

2

−2ak

m
[(α f +λ (1−α)g)(Xk)− (α f +λ (1−α)g)(y)]

where Fk = {X0,X1, · · · ,Xk}.
Two definitions are in order. A sample path is a sequence of {Xk}. For

each y∗ ∈ Y ∗(α,λ ), let Ωy∗ denote the set containing all sample paths {Xk}
such that

2
∞

∑
k=0

ak

m
[(α f +λ (1−α)g)(Xk)− (α f +λ (1−α)g)(y∗)]≤ K <+∞,

and that {‖Xk− y∗‖} converges. We need the following.
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Supermartingale Convergence Theorem (Theorem 3.1 in Nedić & Bertse-
kas, 2001). Let Xk,Zk and Wk, k = 0,1,2, · · · , be three sequences of random
variables and let Fk, k = 0,1,2, · · · , be sets of random variables such that
Fk ⊂Fk+1 for all k. Suppose that:

(a) The random variables Xk, Zk, and Wk are nonnegative, and are functions
of the random variables in Fk.

(b) For each k, we have E{Xk+1|Fk} ≤ Xk−Zk +Wk.
(c) There holds ∑

∞
k=0Wk < ∞.

Then, we have ∑
∞
k=0 Zk < ∞, and the sequence Xk converges to a nonnega-

tive random variable X , with probability 1.

By the supermartingale convergence theorem, for each y∗ ∈ Y ∗(α,λ ),
we have that Ωy∗ is a set of probability 1. Let {νi} be a countable subset
of the relative interior relint(Y ∗(α,λ )) that is dense in Y ∗(α,λ ). Define
Ω =

⋂
∞
i=1 Ωνi . Then Ω has probability 1 since

Prob(
∞⋃
i

Ω̄νi)≤
∞

∑
i=1

Prob(Ω̄νi) = 0.

For each sample path in Ω, the sequence ‖Xk−νi‖ converges so that {Xk} is
bounded. By

2
∞

∑
k=0

ak

m
[(α f +λ (1−α)g)(Xk)− (α f +λ (1−α)g)(y)]≤ K <+∞,

we have

lim
k→∞

[(α f +λ (1−α)g)(Xk)− (α f +λ (1−α)g)(y)] = 0.

Otherwise, if there exist δ > 0 such that for all k,

(α f +λ (1−α)g)(Xk)− (α f +λ (1−α)g)(y)> δ ,

then we have

2
∞

∑
k=0

ak

m
[(α f +λ (1−α)g)(Xk)− (α f +λ (1−α)g)(y)]>

δ

m

∞

∑
k=0

ak =+∞,

which is impossible.
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Continuity of α f +λ (1−α)g implies that all the limit points of {Xk} are
belong to Y ∗(α,λ ). Since {νi} is a dense subset of Y ∗ and ‖Xk−vi‖ converges,
it follows that {Xk} cannot have more than one limit point, so it must converge
to some vector y ∈ Y ∗(α,λ ). This completes the proof of Proposition 4.6.

Remark. In the proof above, we choose y∗ in Y ∗(α,λ ). With such a
choice, there is no guarantee that the term

2α
ak

m
( f (Xk)− f (y∗))−2(1−α)

bk

n
(g(Xk)−g(y∗))

is nonnegative for all k, as required in supermartingale convergence theo-
rem. This is why we need Assumption 3.3 because we need to take the term
4M|bk

n −λ
ak
m | out of it.

Theorem 4.7. Let Assumptions 3.1, 3.3 and 4.5 hold. Assume that (1−α)λ =
α and α ∈ (0,1). Then the sequence {Xk} generated by RDA (9)-(11) conver-
ges to an optimal solution in Y ∗ with probability 1.

Proof. It follows from Proposition 4.6 and the definition of Y ∗(α,λ ), which
coincides with Y ∗ when the condition (1−α)λ = α holds. This completes the
proof.

Remark. Under the assumptions in Theorem 4.7, and also assume that
the limit limk→∞

bk
ak

exists and equals 1. Moreover, assume that m = 2n. Then

λ = 2 because λ = m
n limk→∞

bk
ak

, by Proposition 4.10 in Section 4.4. Theorem
4.7 shows that the price process {Xk} converges to a Walrasian equilibrium of
the underlying economy, with probability 1, if α = 2

3 . Once λ , n or m has a
change, we must also change α accordingly in order to achieve a Walrasian
equilibrium. Otherwise the price process {Xk} still converges but it may not
converge to a Walrasian equilibrium of the underlying economy. Once again,
Assumption 3.3 is the key. If it does not hold, then Theorem 4.7 fails again, as
shown in Xu et al. (2015, 2016).

4.3. A Numerical Example

The following example has been also studied by Xu et al. (2014, 2015, 2016).
Now we use this example to illustrate why Theorems 4.4 and 4.7 may fail to
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converge to a Walrasian equilibrium of the underlying economy if the condition
λ = α

1−α
does not hold. There are three sellers, i = 1,2,3, with each seller

i = 1,2,3 an initial endowment of (i+1) units of an identical (divisible) good.
There are five buyers j = 1,2, · · · ,5, each buyer j’s consumer’s surplus or
profit function g j : R+→ R is obtained from

g j(y) = max
q≥0

u j(q)−qy,

where u j : [0,∞) → R+ is j’s utility function given by u j(q) = ( j + 1) +
2
√

( j+1)q. The supply curve for each seller is Si(y) = [0, i+ 1] for y = 0
and Si(y) = i+1 for y > 0, i = 1,2,3. The demand curve D j(y) = q∗j , where
u′i(q

∗
j) = y for y >> 0, j = 1,2, · · · ,5. In this example, we can set fi(y) =

(i+1)y for i∈ I = {1,2,3} and g j(y) = ( j+1)+ j+1
y for j ∈ J = {1,2, · · · ,5}

so that D j(y) = q∗j =
j+1
y2 . Thus, the equilibrium price equals y∗=

√
20
9 = 1.49.

Note that the three sellers and five buyers have no knowledge where the
equilibrium price 1.49 is. Neither do they know the total demand and supply.
Each of them just submits their bid and ask based on their own private informa-
tion. The two double auctions acting as a clearinghouse integrate individually
“dispersed and incomplete information” (Hayek, 1945) into prices. While the
equilibrium price equals y∗ = 1.49, the price, to which the price process under

RDA converges, is
√

λ (1−α)
α

y∗. Thus, if α = 0.1 and λ = 1, the price process
under RDA converges to the price 3y∗, 200% higher than the original Walrasian
equilibrium price y∗. If α = 0.5 while λ = 9, the price process converges to
3y∗ as well. A crash price is also possible. For example, with α = 0.8 and
λ = 1, the price process converges to 1

2y∗, 50% lower than the equilibrium
price of the original economy. Xu et al. (2015, 2016) provide simulations that
are consistent with these theoretical predictions under Theorem 4.7.

For Theorem 4.4, we may assume that there are five sellers to the above
example. Now the original Walrasian equilibrium becomes y∗ = 1. With
α = 0.1 and λ = 1, the CDA generates a sequence of prices that converges to
3, 200% higher than the original equilibrium price y∗ = 1. Note that the initial
distribution of endowments among the five agents is not that important.

Assume that limk
bk
ak

exists and equals 1. There are some λ such that
the λ conditions in Assumptions 3.2 and 3.3 hold. Then we know that λ =
limk

bk
ak

= 1 for CDA and RDA for five sellers and five buyers economy, the
two auctions generate price sequences that converge to the equilibrium price 1
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when α = 1
2 . Any other α can result in a price that is either higher or lower

than the equilibrium price 1.
Consider the three sellers and five buyers economy with RDA again. Also

assume that limk
bk
ak

exists and equals 1 and there are some λ such that As-
sumption 3.3 holds. Then λ = 3

5 . In order for RAD to achieve the equilibrium
price 1.49, one must have α equal 3

8 . Any other α will result in a price that is
either higher or lower than the equilibrium price 1.49. Therefore, whether DA
can achieve an equilibrium depends on a combination of α and λ and the λ

condition.

4.4. A Discussion about the λ Condition

We have seen that λ plays a key role. In Assumption 3.2, we need λ to satisfy
the condition such that ∑

∞
k=0 |bk−λak|<+∞. Is there such a λ for any two

sequences {ak} and {bk} that satisfy Assumption 3.1? Unfortunately the ans-
wer is not always affirmative. The relative strength between ask and bid step
sizes is quite subtle for CDA or RDA mechanism.

Example 4.8. Let

ak =


1
k , k is odd

1
k2 , k is even

bk =


1
k2 , k is odd

1
k , k is even

Then

∞

∑
k=0
|ak−λbk| ≥ ∑

k≥[λ ]+1

k is odd

|ak−λbk|

= ∑
k≥[λ ]+1

k is odd

ak−λ ∑
k≥[λ ]+1

k is odd

bk

= ∑
k≥[λ ]+1

k is odd

1
k
−λ ∑

k≥[λ ]+1

k is odd

1
k2 =+∞
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for any λ .

The next example shows that even if the limit limk→∞
bk
ak

exits and equals 1,
there may not exist λ that satisfies Assumption 3.2.

Example 4.9. Let ak =
1

k
3
4

and bk = ak(1+a
1
3
k ). Then

lim
k→∞

bk

ak
= lim

k→∞
(1+

1

k
1
4
) = 1.

But
∞

∑
k=0
|bk−ak|=

∞

∑
k=0

a
4
3
k =

∞

∑
k=0

1
k
=+∞.

Note that, by Proposition 4.10 below, if there exists a λ that satisfies Assump-
tion 3.2, it can only be 1. Hence, no λ exists and satisfies Assumption 3.2 here.

The following answers what λ must be.

Proposition 4.10. Let Assumption 3.1 hold. If ∑
∞
k=0 |bk− λak| < +∞ for

some λ , then the following must hold

liminf
k→∞

bk

ak
≤ λ ≤ limsup

k→∞

bk

ak
.

Proof. If there exist δ > 0 and k0 such that bk
ak
−λ > δ for all k ≥ k0, then

∞

∑
k=k0

|bk−λak| ≥ δ

∞

∑
k=k0

ak =+∞, a contradiction.

Hence, liminfk→∞
bk
ak
≤ λ is one necessary condition for ∑

∞
k=0 |bk−λak|<+∞.

Similarly, limsupk→∞

bk
ak
≥ λ . This completes the proof.

Proposition 4.11. Let Assumption 3.1 hold. If there exists a λ such that
∑

∞
k=0 |bk−λak|<+∞, then it must be unique.
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Proof. Suppose, on the contrary, that there are two λ and λ ′ such that

∞

∑
k=0
|bk−λak|<+∞ and

∞

∑
k=0
|bk−λ

′ak|<+∞.

Then

|λ −λ
′|

∞

∑
k=0

ak ≤
∞

∑
k=0
|bk−λak|+

∞

∑
k=0
|bk−λ

′ak|<+∞.

But ∑
∞
k=0 ak =+∞, a contradiction. This completes the proof.

Thus, there exists at most one λ that satisfies Assumption 3.2 for any two
given sequences {ak} and {bk} satisfying Assumption 3.1. But for any given
λ , there are a family of step sizes {ak} and {bk} that satisfy Assumptions 3.1
and 3.2. Let ak =

1
k and bk = 2ak + ca2

k . Then Assumption 3.2 is satisfied with
λ = 2 for any positive finite number c and any {ak} that satisfies Assumption
3.1.

5. DA MECHANISM WITH STOCHASTIC NOISES

Let f = ∑
m
i=1 fi and g = ∑

m
i=1 gi. Assume X0 is a random initial vector. Let εi,k

and δi,k denote two independent random noise vectors. (DA) mechanism with
stochastic noises is defined as follows.

Let Φ0,k = Xk. For i = 1,2, · · · ,m, let

ψi,k = Φi−1,k−ak(hi,k + εi,k), hi,k ∈ ∂ fi(Φi−1,k) (14)
ϕi,k = Φi−1,k−bk(`i,k +δi,k), `i,k ∈ ∂gi(Φi−1,k) (15)
Φi,k = PY (αψi,k +(1−α)ϕi,k), α ∈ [0,1]. (16)

Let
Xk+1 = Φm,k. (17)

PY is the Euclidean projection onto Y .
We define F i

k to be the σ -algebra generated by the sequence

Φ0,0,Φ1,0, · · · ,Φm,0, · · · ,Φi,k.

Note that F 0
k is also denoted as Fk.
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Assumption 5.1. There exist deterministic scalar sequences {µk}, {νk}, {τk}
and {σk} that satisfy the following inequalities for all i and k:

‖E[εi,k|F i−1
k ]‖ ≤ µk, ‖E[δi,k|F i−1

k ]‖ ≤ τk;

E[‖εi,k‖2|F i−1
k ]≤ ν

2
k , E[‖δi,k‖2|F i−1

k ]≤ σ
2
k .

Note that µk ≤ νk and τk ≤ σk for all k = 0,1, · · · . The noise terms in the
assumption above are similar to those in Ram et al. (2009). Their results,
however, do not apply to (DA) mechanism (14)-(17) because there are two
sequences of step-sizes that interact together to determine the price iteration
process {Xk}.

The following lemma is the key and its proof is provided in the Appendix.

Lemma 5.2. Let Assumption 5.1 hold. Then the sequence {Xk} generate by
(DA) mechanism with stochastic noises (14)-(17) is such that for any step-size
rule and any y ∈ Y ,

E[‖Xk+1− y‖2|F m
k−1] ≤ ‖Xk− y‖2−2αak( f (Xk)− f (y))

−2(1−α)bk(g(Xk)−g(y))

+2(αakµk +(1−α)bkτk)
m

∑
i=1

E[‖Φi−1,k− y‖|F m
k−1]

+(αakC+(1−α)bkD+αmakνk +(1−α)mbkσk)
2,

Note that F m
k−1 = F 0

k .

5.1. Main Result with Stochastic Noises

Assumption 5.3. The following holds:

∞

∑
k=0

akµk < ∞,
∞

∑
k=0

bkτk < ∞,
∞

∑
k=0

a2
kν

2
k < ∞,

∞

∑
k=0

b2
kσ

2
k < ∞.

Proposition 5.4. Let Assumptions 3.1, 3.2, 5.1 and 5.3 hold. Then the se-
quence {Xk} generated by (DA) mechanism with stochastic noises (14)-(17)
converges to an optimal solution y∗ ∈ Y ∗(α,λ ), with probability 1.
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Proof. By Lemma 5.2, for any y∗ ∈ Y ∗(α,λ ), we have that

E[‖Xk+1− y∗‖2|F m
k−1]≤ ‖Xk− y∗‖2 +Mk

−2αak( f (Xk)− f (y∗))−2(1−α)bk(g(Xk)−g(y∗))

+2(αakµk +(1−α)bkτk)
m

∑
i=1

E[‖Φi−1,k− y∗‖|F m
k−1],

where Mk = (αakC+(1−α)bkD+mαakνk +m(1−α)bkσk)
2.

Since

E[‖Φi−1,k− y∗‖|F m
k−1] ≤ E[‖Φi−1,k−Xk‖|F m

k−1]+‖Xk− y∗‖

≤
i−1

∑
j=1

(αakC j +(1−α)bkD j +αakνk

+(1−α)bkσk)+‖Xk− y∗‖.

In the second inequality above we have used Lemma 5.2.1 in the Appendix
and Assumption 5.1.

Hence,

2(αakµk + (1−α)bkτk)
m

∑
i=1

E[‖Φi−1,k− y∗‖|F m
k−1]

≤ 2(αakµk +(1−α)bkτk)
m

∑
i=1
{

i−1

∑
j=1

(αakC j

+(1−α)bkD j +αakνk +(1−α)bkσk)+‖Xk− y∗‖}

≤ 2(αakµk +(1−α)bkτk)
m

∑
i=1

i−1

∑
j=1
{αakC j

+(1−α)bkD j +αakνk +(1−α)bkσk}
+m(αakµk +(1−α)bkτk)(‖Xk− y∗‖2 +1).

In the last inequality above we have used the inequality a2 +1≥ 2a.
And then

E[‖Xk+1− y∗‖2|F m
k−1] ≤ (1+m(αakµk +(1−α)bkτk))‖Xk− y∗‖2

+(Mk +Nk)−2αak( f (Xk)− f (y∗))
−2(1−α)bk(g(Xk)−g(y∗)),
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where

Nk = 2(αakµk +(1−α)bkτk)
m

∑
i=1

i−1

∑
j=1
{αakC j +(1−α)bkD j

+αakνk +(1−α)bkσk}+m(αakµk +(1−α)bkτk).

We need the following lemma in our proof below.

Lemma 3.2 in Ram et al. (2009): Let (Ω,F ,P) be a probability space and
let F0 ⊂F1 ⊂ ·· · be a sequence of sub σ -fields of F . Let uk,vk and wk,
k = 0,1,2, · · · , be non-negative Fk-measurable random variables and let {qk}
be a deterministic sequence. Assume that ∑

∞
k=0 qk < ∞, ∑

∞
k=0 wk < ∞, and

E{uk+1|Fk} ≤ (1+qk)uk− vk +wk

hold with probability 1. Then, with probability 1, the sequence {uk} converges
to a non-negative random variable and ∑

∞
k=0 vk < ∞.

To apply Lemma 3.2 in Ram et al. (2009), let qk =m(αakµk+(1−α)bkτk)
and Wk = Mk +Nk.

Then

∞

∑
k=0

qk = mα

∞

∑
k=0

akµk +m(1−α)
∞

∑
k=0

bkτk <+∞

∞

∑
k=0

Wk =
∞

∑
k=0

(Mk +Nk).

Since, using a2 +b2 ≥ 2ab and Assumption 5.3,

∞

∑
k=0

Mk =
∞

∑
k=0

(αakC+(1−α)bkD+mαakνk +m(1−α)bkσk)
2

≤ 4
∞

∑
k=0

[(αakC)2 +((1−α)bkD)2 +(mαakνk)
2 +(m(1−α)bkσk)

2]

< ∞
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and, by µk ≤ νk and τk ≤ σk in Assumption 5.1,

∞

∑
k=0

Nk =
∞

∑
k=0

2(αakµk +(1−α)bkτk)
m

∑
i=1

i−1

∑
j=1
{αakC j

+(1−α)bkD j +αakνk +(1−α)bkσk}+
∞

∑
k=0

qk

≤
∞

∑
k=0

[
m

∑
i=1

(αakνk +(1−α)bkσk +αakCi +(1−α)bkDi)]
2 +

∞

∑
k=0

qk

≤
∞

∑
k=0

Mk +
∞

∑
k=0

qk < ∞,

we have that ∑
∞
k=0Wk < ∞.

Therefore, we get, with probability 1, the sequence ‖Xk− y∗‖2 converges
to some non-negative random variable for every y∗ ∈ Y (α,λ ). Also with
probability 1, we have

∞

∑
k=0

(αak( f (Xk)− f (y∗))+(1−α)bk(g(Xk)−g(y∗)))<+∞,

which implies that
∞

∑
k=0

ak[(α f +(1−α)λg)(Xk)− (α f +(1−α)λg)(y∗)]

≤
∞

∑
k=0

(αak( f (Xk)− f (y∗))+(1−α)bk(g(Xk)−g(y∗)))

+
∞

∑
k=0

(1−α)|bk−λak||g(Xk)−g(y∗)|

<+∞.

Since Y is compact and g is continuous, the image of g is bounded. Assume
∃M > 0 such that |g(y)| ≤M for all y ∈ Y . Then

∞

∑
k=0

(1−α)|bk−λak||g(Xk)−g(y∗)| ≤ 2M(1−α)
∞

∑
k=0
|bk−λak|<+∞.

Since ∑
∞
k=0 ak =+∞, then

liminf
k→∞

(α f +(1−α)λg)(Xk) = (α f +(1−α)λg)(y∗),
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with probability 1.
By considering a sample path for which

liminf
k→∞

(α f +(1−α)λg)(Xk) = (α f +(1−α)λg)(y∗)

and ‖Xk− y∗‖2 converges for any y∗, we conclude that the sample sequence
must converge to some y∗ in view of continuity of f . Hence, the sequence
{Xk} converges to some optimal solution in Y ∗(α,λ ) with probability 1. This
completes the proof of Proposition 5.4x .

Remark. Strictly speaking, the term 2αak( f (Xk)− f (y∗))+2(1−α)bk[
g(Xk)−g(y∗)] may not be nonnegative so that we cannot directly apply Lemma
3.2. But this will not cause a problem as long as Assumptions 3.1 and 3.2 are
satisfied because we can always follow the proof of Proposition 4.6 to remove
the term 4M|bk

n −λ
ak
m | from it.

Immediately we obtain from Proposition 5.4 the following.

Theorem 5.5. Let Assumptions 3.1, 3.2, 5.1 and 5.3 hold. Assume that
λ = α

1−α
, α ∈ (0,1). Then the sequence {Xk} generated by the DA mecha-

nism with stochastic noises (14)-(17) converges to an optimal solution in Y ∗,
with probability 1.

5.2. RDA Mechanism with Stochastic Noises

Recall that wk is a random variable taking equiprobable values from the set
{1,2, · · · ,m} and w′k is a random variable taking equiprobable values from the
set {1,2, · · · ,n}. Also recall that hwk(Xk) ∈ ∂ fwk(Xk) and `w′k

(Xk) ∈ ∂gw′k
(Xk),

where if wk takes a value j, then the vector ∂ fwk(Xk) is ∂ f j(Xk), similarly for
g.

Our sequence {Xk} is generated by (RDA) mechanism with stochastic
noises as below.

Given Xk, let

ψk+1 = Xk−ak(hwk(Xk)+ εwk,k), hwk(Xk) ∈ ∂ fwk(Xk) (18)

and
ϕk+1 = Xk−bk(`w′k

(Xk)+δw′k,k
), `w′k

(Xk) ∈ ∂gw′k
(Xk). (19)
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And set

Xk+1 = PY (αψk+1 +(1−α)ϕk+1), α ∈ [0,1]. (20)

PY is the Euclidean projection onto Y .

We define Fk to be the σ -field generated by X0,X1, · · · ,Xk.

Assumption 5.8. The sequence {wk}({w′k}) is a sequence of independent
random variables, each uniformly distributed over the set {1,2, · · · ,m}({1,2, · · · ,n}).
Furthermore, the two sequences {wk} and {w′k} are independent of the se-
quence {Xk}.

Proposition 5.9. Let Assumptions 3.1, 3.3, 5.1, 5.3, and 5.8 hold. Then the
sequence {Xk} generated by (RDA) with randomization and stochastic noises
(18)-(20) converges to an optimal solution in Y ∗(α,λ ), with probability 1.

Proof. The proof is similar to those of Proposition 4.6 and Proposition 5.4 and
thus omitted.

The following result follows from Proposition 5.9 and the definition of
Y ∗(α,λ ), which is the same as Y ∗ when the equality λ = α

1−α
holds.

Theorem 5.10. Let Assumptions 3.1, 3.3, 5.1, 5.3, and 5.8 hold. Assume that
λ = α

1−α
, α ∈ (0,1). Then the sequence {Xk} generated by (RDA) mechanism

with stochastic noises (18)-(20) converges to an optimal solution in Y ∗, with
probability 1.

6. CONCLUDING REMARKS

This paper studies two dynamic double auctions and examines the question
of whether the price processes they generate can converge to a Walrasian
equilibrium of the underlying economy. We show that the weight α and the
λ condition are important for the convergence of these price processes. With
the right combinations of α and λ , the price processes generated by the two
auctions converge to a Walrasian equilibrium of the underlying economy. If
the combination is not right, the price processes may generate a bubble or
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crash. Numerical examples show that such a bubble or crash can reach an
enormous level, as shown in Xu et al. (2015, 2016), which provide extensions
of the convergence results presented in Ma & Li (2011) to more complicated
environments. Our results and those in the literature imply that the form of
double auctions does matter very much for the price determination of an asset
or a good traded in an exchange market. Because human emotion such as fear
and greed may affect the two parameters, our results also shed some important
light on how human emotion may impact the price of an asset in an exchange
market that uses double auctions as clearinghouses.

In a laissez-faire economy, private information can be successively incor-
porated into the price of a good through individual decisions of what to buy
or sell. Without knowing what may be the price at equilibrium for a good,
the market via an invisible hand can reach an equilibrium. Such a view is
the foundation for economic analyses based on equilibrium. The incremental
subgradient method in Nedić & Bertsekas (2001) can be used to show how this
may be done in theory for a quasilinear economy, with some intervention from
a central authority by setting the step size rules properly. Such an approach
is especially important for market mechanisms since every individual has a
piece of private information while the market equilibrium prices must reflect
all relevant private information. Chen et al. (2016) provide a different approach
for a totally uncoordinated and decentralized market, in which every firm and
every worker can form a matching pair randomly and seek opportunities to
improve their individual positions. They prove that without any clearinghouse
or coordination, starting with any matching and any salary scheme system,
stable or not, a natural decentralized random matching process converges to a
Walrasian equilibrium with probability one in finite time. It remains open to
question if there is a good way to integrate the two approaches.

The study of the competitive efficiency of a DA mechanism started with
experiments for an identical good in V. L. Smith (1962, 1965) where an artifi-
cial market was created with competitive equilibrium unknown to the buyers
and sellers. In these experiments the DA mechanism converged quickly to a
neighbor of the competitive equilibrium, even with a few participants. A great
number of experiments have been conducted since then and a similar result
has been obtained (Friedman & Rust, 1993). In recent years the competitive
efficiency of a DA mechanism has been retested in experiments with more
complicated environments, which are deliberately designed to be a proxy of an
exchange market. V. L. Smith et al. (1988) show that both bubbles and crashes
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can be generated by a DA mechanism under these environments. Therefore,
the allocative efficiency of a DA mechanism is a complicated issue. We show
in this paper that the efficiency of our two DA mechanisms depends on the
relative strength of the two step-sizes of the bid and the ask through a parameter
λ and the weight how these bids and asks enter the price process. The two
parameters may be considered as two “steering” factors because they act just
like a steering in a vehicle; a different combination of the two directs the price
process to different places.

Our study of the two DA mechanisms is applicable to a market where there
are potentially a large number of agents and a large number of assets. The
primary task of our paper is to provide an explanation of the price determination
of a good. Our results are closely related to those obtained with the incremental
subgradient method in Nedić & Bertsekas (2001) and Ram et al. (2009).
Because the problem P has so many other applications (Bertsekas, 2009,
2012), our DA mechanisms provide an alternative explanation of how an
optimal solution can be approached for those environments (e.g., distributed
and neural networks).
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7. APPENDIX

This appendix contains the proof of Lemma 5.2 which is divided into several steps.

Proof of Lemma 5.2. By non-expansive property of projection,

‖Φi,k− y‖2 ≤ ‖αψi,k +(1−α)ϕi,k− y‖2

= ‖α(ψi,k− y)+(1−α)(ϕi,k− y)‖2

= α
2‖ψi,k− y‖2 +(1−α)2‖ϕi,k− y‖2 +2α(1−α)〈ψi,k− y,ϕi,k− y〉

= α
2‖Φi−1,k− y−akhi,k−akεi,k‖2

+(1−α)2‖Φi−1,k− y−bk`i,k−bkδi,k‖2

+2α(1−α)〈Φi−1,k− y−akhi,k−akεi,k,Φi−1,k− y−bk`i,k−bkδi,k〉
= α

2‖Φi−1,k− y−akhi,k‖2 +α
2a2

k‖εi,k‖2

−2α
2〈Φi−1,k− y−akhi,k,akεi,k〉+2α(1−α)akbk〈εi,k,δi,k〉

+(1−α)2‖Φi−1,k− y−bk`i,k‖2 +(1−α)2b2
k‖δi,k‖2

−2(1−α)2〈Φi−1,k− y−bk`i,k,bkδi,k〉
+2α(1−α)〈Φi−1,k− y−akhi,k,Φi−1,k− y−bk`i,k〉
−2α(1−α)〈Φi−1,k− y−akhi,k,bkδi,k〉
−2α(1−α)〈Φi−1,k− y−bk`i,k,akεi,k〉

= ‖α(Φi−1,k− y−akhi,k)+(1−α)(Φi−1,k− y−bk`i,k)‖2

+‖αakεi,k +(1−α)bkδi,k‖2

−2α〈Φi−1,k− y−akhi,k,αakεi,k +(1−α)bkδi,k〉
−2(1−α)〈Φi−1,k− y−bk`i,k,αakεi,k +(1−α)bkδi,k〉

= ‖Φi−1,k− y‖2−2αak〈hi,k,(Φi−1,k− y)〉
−2(1−α)bk〈`i,k,(Φi−1,k− y)〉
+‖αakhi,k +(1−α)bk`i,k‖2 +‖αakεi,k +(1−α)bkδi,k‖2

−2α〈Φi−1,k− y−akhi,k,αakεi,k +(1−α)bkδi,k〉
−2(1−α)〈Φi−1,k− y−bk`i,k,αakεi,k +(1−α)bkδi,k〉

Taking conditional expectations with respect to the σ -field F i−1
k leads to
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E[‖Φi,k− y‖2|F i−1
k ] ≤ {‖Φi−1,k− y‖2−2αak〈hi,k,(Φi−1,k− y)〉

−2(1−α)bk〈`i,k,(Φi−1,k− y)〉+‖αakhi,k +(1−α)bk`i,k‖2}
+{E[‖αakεi,k +(1−α)bkδi,k‖2|F i−1

k ]

−2α〈Φi−1,k− y−akhi,k,E[αakεi,k +(1−α)bkδi,k|F i−1
k ]〉

−2(1−α)〈Φi−1,k− y−bk`i,k,

E[αakεi,k +(1−α)bkδi,k|F i−1
k ]〉}

= I + II.

Consider II first. We have that, by Assumption 5.1,

II ≤ (αakνk +(1−α)bkσk)
2 +2α(‖Φi−1,k− y‖+ak‖hi,k‖)(αakµk +(1−α)bkτk)

+2(1−α)(‖Φi−1,k− y‖+bk‖`i,k‖)(αakµk +(1−α)bkτk)

= (αakνk +(1−α)bkσk)
2 +2‖Φi−1,k− y‖(αakµk +(1−α)bkτk)

+2αakCi(αakµk +(1−α)bkτk)+2(1−α)bkDi(αakµk +(1−α)bkτk).

Now consider I. Since hi,k ∈ ∂ fi(Φi−1,k) and `i,k ∈ ∂gi(Φi−1,k) so that

〈hi,k,(y−Φi−1,k)〉 ≤ fi(y)− fi(Φi−1,k)

and
〈`i,k,(y−Φi−1,k)〉 ≤ gi(y)−gi(Φi−1,k),

we have that

I ≤ ‖Φi−1,k− y‖2−2αak( fi(Φi−1,k)− fi(y))−2(1−α)bk(gi(Φi−1,k)−gi(y))

+‖αakCi +(1−α)bkDi‖2.

Taking the expectations conditional on F m
k−1 = F 0

k , we obtain from I + II that

E[‖Φi,k− y‖2|F m
k−1] ≤ E[‖Φi−1,k− y‖2|F m

k−1]−2αak( fi(Xk)− fi(y))

−2(1−α)bk(gi(Xk)−gi(y))

+2E[‖Φi−1,k− y‖|F m
k−1](αakµk +(1−α)bkτk)+Mi,k,

where

Mi,k = (αakCi +(1−α)bkDi)
2 +(αakνk +(1−α)bkσk)

2

+2αakCi(αakµk +(1−α)bkτk)+2(1−α)bkDi(αakµk +(1−α)bkτk)

+2αakE[‖ fi(Φi−1,k)− fi(Xk)‖|F m
k−1]

+2(1−α)bkE[‖gi(Φi−1,k)−gi(Xk)‖|F m
k−1].
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Note that Φ0,k = Xk and Φm,k = Xk+1. Taking sum over i = 1,2, · · · ,m, we have that

E[‖Xk+1− y‖2|F m
k−1] ≤ ‖Xk− y‖2−2αak( f (Xk)− f (y))

−2(1−α)bk(g(Xk)−g(y))+
m

∑
i=1

Mi,k

+2(αakµk +(1−α)bkτk)
m

∑
i=1

E[‖Φi−1,k− y‖|F m
k−1].

Next we consider ∑
m
i=1 Mi,k.

Lemma 5.2.1. We claim that

‖Φi−1,k−Xk‖ ≤
i−1

∑
j=1

[αakC j +(1−α)bkD j +αak‖ε j,k‖+(1−α)bk‖δ j,k‖].

Proof of Lemma 5.2.1. We prove by induction.

‖Φi,k−Xk‖ ≤ ‖(αψi,k +(1−α)ϕi,k)−Xk‖
≤ α‖ψi,k−Xk‖+(1−α)‖ϕi,k−Xk‖
= α‖Φi−1,k−akhi,k−akεi,k−Xk‖

+(1−α)‖Φi−1,k−bk`i,k−bkδi,k−Xk‖
≤ ‖Φi−1,k−Xk‖+αak‖hi,k‖+(1−α)bk‖li,k‖

+αak‖εi,k‖+(1−α)bk‖δi,k‖.

By induction, we get that

‖Φi,k−Xk‖ ≤
i

∑
j=1

[αakC j +(1−α)bkD j +αak‖ε j,k‖+(1−α)bk‖δ j,k‖].

This completes the proof of Lemma 5.2.1.
We now continue the proof of Lemma 5.2 and have

E[‖ fi(Φi−1,k)− fi(Xk)‖|F m
k−1] ≤ E[Ci

i−1

∑
j=1

(αakC j +(1−α)bkD j +αak‖ε j,k‖

+(1−α)bk‖δ j,k‖)|F m
k−1]

≤ Ci

i−1

∑
j=1
{αakC j +(1−α)bkD j +αakνk

+(1−α)bkσk};
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and

E[‖gi(Φi−1,k)−gi(Xk)‖|F m
k−1] ≤ E[Di

i−1

∑
j=1
{αakC j +(1−α)bkD j +αak‖ε j,k‖

+(1−α)bk‖δ j,k‖}|F m
k−1]

≤ Di

i−1

∑
j=1
{αakC j +(1−α)bkD j +αakνk

+(1−α)bkσk}.

Then
m

∑
i=1

Mi,k ≤
m

∑
i=1

(αakCi +(1−α)bkDi)
2 +m(αakνk +(1−α)bkσk)

2

+2
m

∑
i=1

(αakCi +(1−α)bkDi)(αakµk +(1−α)bkτk)

+2
m

∑
i=1

(αakCi +(1−α)bkDi)
i−1

∑
j=1
{αakC j +(1−α)bkD j

+αakνk +(1−α)bkσk} (since µk ≤ νk and τk ≤ σk)

≤
m

∑
i=1

(αakCi +(1−α)bkDi +αakνk +(1−α)bkσk)
2

+2
m

∑
i=1

(αakCi +(1−α)bkDi +αakνk +(1−α)bkσk)×

i−1

∑
j=1

(αakC j +(1−α)bkD j +αakνk +(1−α)bkσk)

= (
m

∑
i=1

(αakCi +(1−α)bkDi +αakνk +(1−α)bkσk))
2

= (αakC+(1−α)bkD+αmakνk +(1−α)mbkσk)
2.

This completes the proof of Lemma 5.2.
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